Adam Cap

  • About
  • Mail
  • Archive/Search

Enthalpy of Hydration Between MgSO4 and MgSO4 ∙ 7 H2O

↘︎ Nov 14, 2006 … 2′ … download⇠ | skip ⇢

Introduction

Enthalpy of hydration is the energy change for converting 1 mol of an anhydrous substance to 1 mol of the hydrated substance. In order to find this number, it is necessary to first calculate the enthalpy of dissolution for each substance separately, and then find the different between the two. The enthalpy of dissolution is the energy change of dissolving 1 mol of a substance in water. It is calculated using temperature changes in the water, heat capacity of the substance, and the weight of the mixture. For this experiment, MgSO4 and MgSO4 ∙ 7 H2O were used and the enthalpy of hydration between the two was calculated.

Experimental

A Styrofoam cup and stirring bar were first obtained and weighed together. This mass was recorded. 100.0 mL of deionized water was measured with a graduated cylinder and then put into the cup with the stirring bar. The cup was again weighed and this new mass was recorded. The cup was then placed on a mixing plate set on medium to high and its temperature was recorded every 30 second for 4.5 minutes. An unknown amount of MgSO4 salt was added to the cup. The cup kept on the mixing plate set on medium to high and its temperature was recorded every minute for 15 minutes. Finally, the cup was weighed and its final mass was recorded. This process was repeated placing the MgSO4 with MgSO4 ∙ 7 H2O.

Results

Measurement MgSO4 ∙ 7 H2O Trial MgSO4 Trial
Mass of cup and stirring bar (g) 7.85 7.41
Mass of cup, stirring bar, and water (g) 107.21 106.70
Mass of water (g) 99.36 99.29
Mass of cup, stirring bar, water, and salt (g) 119.50 113.06
Mass of Mg salt (g) 12.29 6.36
Molar mass of solute (g) 246.476 120.369
Moles of solute added (mol) 0.04986 0.0528
Mass of salt and water (g) 111.68 105.65
Initial temperature at time of mixing (ºC) 20.90 21.60
Extrapolated final temperature of reaction mixture (ºC) 19.27 32.65
ΔT = Tfinal – Tinitial (ºC) -1.63 12.05
Heat Capacity of reaction mixture (J/(gºC)) 3.84 3.84
Heat transferred during dissolution, Q (Joule) 699. -4890.
ΔHdissolution (J/mole) 14000. (14.0 kJ) -92600. (-92.6 kJ)

Enthalpy of Hydration: -106.6 kJ

Time (minutes) Temperature of MgSO4 ∙ 7 H2O solution (ºC) Temperature of MgSO4 solution (ºC)
0.0 n/a n/a
0.5 20.90 21.63
1.0 20.90 21.63
1.5 20.90 21.63
2.0 20.90 21.62
2.5 20.90 21.60
3.0 20.90 21.60
3.5 20.90 21.59
4.0 20.89 21.57
4.5 20.89 21.57
5.0 (salt added) n/a n/a
5.5 19.57 26.50
6.0 19.30 27.18
7.0 19.29 28.72
8.0 19.30 29.12
9.0 19.32 29.50
10.0 19.35 31.20
11.0 19.38 31.65
12.0 19.40 31.60
13.0 19.42 31.44
14.0 19.49 31.28
15.0 19.50 31.10
16.0 19.51 30.91
17.0 19.58 30.76
18.0 19.60 30.58
19.0 19.65 30.43
20.0 19.69 30.23

Calculations

To find the mass of water used, I subtracted the weight of the cup with just the stirring rod from the weight of the cup with the stirring rod and water. To find the weight of the salt used, I subtracted the weight of the cup, stirring rod, and water from the final weight of the cup. In order to find the moles of solute used, I divided the mass of the salt by its molar mass. To find the change in temperature, I subtracted the initial temperature from the final temperature. In order to find Q, the heat capacity of the reaction mixture, I used the equation Q = – (mass of mixture) * (heat capacity of mixture) * (ΔT). To find the ΔHdissolution, I used the equation ΔH = Q / (number of moles of solute). Lastly, to calculate the enthalpy of hydration, I subtracted the ΔHdissolution of the MgSO4 ∙ 7 H2O from the ΔHdissolution of the MgSO4.

Discussion/Conclusions

I was surprised that while the MgSO4 salt heated the water, the MgSO4 ∙ 7 H2O salt cooled the water down. It was interesting that two substances very close in chemical makeup could have such different reactions in water. My graph for the temperature change of water with MgSO4 seems to only gradually jump in temperature after adding the salt. I believe this is because my lab partner forgot to turn the mixer on, so the salt was not completely mixing at first. Other than that, the procedure went well. The enthalpy of hydration of -106.6 kJ seems fairly high. Water takes 4.184 kJ to be raised only 1 ºC, so 106.6 kJ seems like a lot of energy.

Me

circa 2009 (21 y/o)

about adam

Recently…

  • 10 May 25: An Art Critique on “Tennis Court” by Ellsworth Kelly (1949) #ART 1021 (Introduction to Art History & Appreciation II) #Dr. Emily Hage #Saint Joseph’s University
  • 10 Apr 22: Oxygenation and Hydrochlorination of Vaska’s Complex Ir(Cl)[P(C6H5)3]2(CO) #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Apr 21: Refraction Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Apr 20: The Mental, Physical, and Social Implications of Self Enhancement #Dr. Judith J. Chapman #PSY 2341 (Psychology of the Self) #Saint Joseph’s University
  • 10 Apr 18: Law of Reflection Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Apr 16: Synthesis, Determination, and Catalytic Measurement of Ruthenium Indenylidene Complexes used in Olefin Metathesis #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Apr 12: Current Balance Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Apr 10: The Perfect Paper #Mr. Robert Fleeger #PHL 2011 (Knowledge and Existence) #Saint Joseph’s University
  • 10 Mar 29: Magnetic Fields Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Mar 22: Series and Parallel Circuits Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Mar 17: Synthesis and Determination of [1,3,5-C6H3(CH3)3]Mo(CO)3 #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Mar 4: Synthesis and Determination of Polypyrazolylborates #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Mar 2: Electrical Resistance and Ohm’s Law #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Feb 22: Hooke’s Law and Simple Harmonic Motion #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Feb 11: Tinkering with Tin #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Jan 21: Psychology of the Self Notes #Dr. Judith J. Chapman #PSY 2341 (Psychology of the Self) #Saint Joseph’s University
  • 09 Dec 7: The Biochemistry of Anthrax #CHM 2611 (Biochemistry) #Dr. Mark F. Reynolds #Saint Joseph’s University
  • 09 Dec 5: Ring-Opening Metathesis PowerPoint Presentation #CHM 2511 (Inorganic Chemistry) #Dr. Peter M. Graham #Saint Joseph’s University
  • 09 Nov 22: Double Group Transfer Reactions of an Unsaturated Tantalum Methylidene Complex with Pyridine N-Oxides #CHM 2511 (Inorganic Chemistry) #Dr. Peter M. Graham #Saint Joseph’s University
  • 09 Nov 21: Conservation of Angular Momentum #Dr. Paul J. Angiolillo #PHY 1032 (General Physics Lab I) #Saint Joseph’s University
archive

More from…
CHM 1112 (General Chemistry Lab I) (Class) / Dr. Joseph N. Bartlett (Teacher) / Saint Joseph’s University (School) / schoolwork (Post Type)

⇠ Previous
Next schoolwork ⇢
  • Home
  • About
  • Archive
  • Mail
  • Random
  • Dingus
  • Reading
  • Code

ADAM CAP is an elastic waistband enthusiast, hammock admirer, and rare dingus collector hailing from Berwyn, Pennsylvania.

My main interests at this time include reading, walking, and learning how to do everything faster.

Psst: If you find my website helpful or enjoyable, please join my newsletter and/or send me an email—I want to hear from you!

Disclosure: As an Amazon Associate I earn from qualifying purchases.

© 2009–2023 Adam Cap(riola) top ⇡