Adam Cap

  • About
  • Mail
  • Archive/Search

Spectrophotometric Determination of Manganese

↘︎ Nov 28, 2006 … 2′ … download⇠ | skip ⇢

Introduction

A spectrophotometer measures the amount of light absorbed by a solution at different wavelengths of light emitted. Beer’s Law says that absorbance is equal to molar absorptivity times the thickness of the sample times the concentration of the sample. Beer’s law also states that conformity of a solution is able to be determined by plotting its absorbances versus its concentrations, and if a straight line results crossing through the origin, the solution has conformity. Using this information, it is possible to determine an unknown concentration of a solution by finding its absorbance, or if given its concentration, its absorbance can be found without the use of a spectrophotometer.

Experimental

First, a spectrophotometer was turned on, allowed to warm up for about 15 minutes, and was set at a wavelength 400 nm. A cuvette filled with deionized water was used for blanking the spectrophotometer. A second cuvette was filled with a solution of potassium permanganate which was provided. Each cuvette was wiped with a Kimwipe before being placed in the spectrophotometer in order to eliminate smudges which could affect the light passing through. The spectrophotometer was blanked at 400 nm and the cuvette with the potassium permanganate solution was placed in, and its absorbance was read and recorded. It was taken out, and the spectrophotometer was then blanked at 410 nm. The cuvette with the potassium permanganate solution was once against placed in the spectrophotometer. Its absorbance was read and recorded again. This process was repeated, increasing the wavelength of the spectrophotometer by 10 nm until it reached 640 nm when recording ceased. The wavelength with the highest absorbance was used for the rest of the experiment.

Four volumetric flasks were then used to make solutions of KMnO4. Flask 1 was a 100 mL volumetric flask that contained 10 mL of 3.170 x 10-4 M KMnO4, which was dispensed into the flask using a buret. Flasks 2 through 4 were all 50 mL volumetric flasks that contained 20 mL, 30 mL, and 40 mL respectively of 3.170 x 10-4 M KMnO4. All four volumetric flasks were filled to the line on the neck with deionized water. All the flasks were agitated, and cuvettes were filled with each sample. Each cuvette was placed in the spectrophotometer and their absorbances were all recorded.

Next the unknown was placed into a 250 mL beaker and 10 mL of concentrated nitric acid was added to it. Then 0.5 g of potassium periodate was dissolved in 40 mL of deionized water. This solution was heated with a hot plate in order to aid the dissolving process. The contents of the 250 mL beaker were emptied into this solution and were heated for about 10 minutes, but the solution was never brought to a boil. After heating, the solution was put on ice and brought back to room temperature. A cuvette was then filled with this solution and its absorbance was determined and recorded using the spectrophotometer.

Results

Absorption vs. Wavelength for Maximum Absorbance Determination:

Wavelength (nm) Absorbance
400 0.051
410 0.043
420 0.057
430 0.056
440 0.059
450 0.107
460 0.159
470 0.253
480 0.373
490 0.515
500 0.671
510 0.842
520 0.961
530 1.063
540 0.991
550 0.971
560 0.657
570 0.612
580 0.357
590 0.161
600 0.127
610 0.105
620 0.119
630 0.088
640 0.076

Standard Solutions:

Standard solution Initial buret reading Final buret reading Volume added (mL)
Standard #1 5.00 15.00 10.00
Standard #2 15.00 35.00 20.00
Standard #3 1.50 31.50 30.00
Standard #4 0.60 40.60 40.00

Unknown Number: 14

Wavelength: 530

Standard solution Concentration of KMnO4 (M) Absorbance
Standard #1 3.170 x 10-5 (10%) 0.038
Standard #2 1.268 x 10-4 (40%) 0.313
Standard #3 1.902 x 10-4 (60%) 0.453
Standard #4 2.536 x 10-4 (80%) 0.605
Standard #5 3.170 x 10-4 (100%) 0.834
Unknown Solution 1.370 x 10-4 0.322

Calculations

To find the concentration of the standards, I figured out how much the KMnO4­ was diluted in each volumetric flask. I did this by taking the amount of KMnO4­ added, then divided by the total volume on the volumetric flask. I then multiplied this percentage by the original concentration of KMnO4, which was 3.170 x 10-4. To find the concentration of the unknown solution, I first got the equation of the standard curve line, which was y = 2701.2x – 0.048. I then substituted the absorbance I found for the unknown, which was 0.322, for y. I could then find the value of x, which was the concentration.

Discussion/Conclusions

Potassium permanganate does indeed seem to follow Beer’s Law. When I plotted the absorbances found against the concentrations, I was left with nearly a straight line that goes almost directly through the origin. It is only 0.048 absorbances away from going through the origin, and the best fit line is very close to hitting every point plotted. This is one way to prove conformity and Beer’s Law.

Sources of error in this experiment could occur many different ways. If the cuvettes are not wiped off before being placed in the spectrophotometer, there could be smudges or fingerprints that would cause error. The wavelength on the spectrophotometer had to be set by eye, so there is some room for error there, too. If the dilutions are made inaccurately, that would also cause error in absorption readings. Overall, if anything measured in this experiment was measured inaccurately, that would cause error. Also, if the solution with the unknown in it was boiled, that may cause it to form something different than we wanted to measure and that would cause error, too.

Me

circa 2013 (25 y/o)

about adam

Recently…

  • 10 May 25: An Art Critique on “Tennis Court” by Ellsworth Kelly (1949) #ART 1021 (Introduction to Art History & Appreciation II) #Dr. Emily Hage #Saint Joseph’s University
  • 10 Apr 22: Oxygenation and Hydrochlorination of Vaska’s Complex Ir(Cl)[P(C6H5)3]2(CO) #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Apr 21: Refraction Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Apr 20: The Mental, Physical, and Social Implications of Self Enhancement #Dr. Judith J. Chapman #PSY 2341 (Psychology of the Self) #Saint Joseph’s University
  • 10 Apr 18: Law of Reflection Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Apr 16: Synthesis, Determination, and Catalytic Measurement of Ruthenium Indenylidene Complexes used in Olefin Metathesis #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Apr 12: Current Balance Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Apr 10: The Perfect Paper #Mr. Robert Fleeger #PHL 2011 (Knowledge and Existence) #Saint Joseph’s University
  • 10 Mar 29: Magnetic Fields Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Mar 22: Series and Parallel Circuits Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Mar 17: Synthesis and Determination of [1,3,5-C6H3(CH3)3]Mo(CO)3 #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Mar 4: Synthesis and Determination of Polypyrazolylborates #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Mar 2: Electrical Resistance and Ohm’s Law #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Feb 22: Hooke’s Law and Simple Harmonic Motion #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Feb 11: Tinkering with Tin #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Jan 21: Psychology of the Self Notes #Dr. Judith J. Chapman #PSY 2341 (Psychology of the Self) #Saint Joseph’s University
  • 09 Dec 7: The Biochemistry of Anthrax #CHM 2611 (Biochemistry) #Dr. Mark F. Reynolds #Saint Joseph’s University
  • 09 Dec 5: Ring-Opening Metathesis PowerPoint Presentation #CHM 2511 (Inorganic Chemistry) #Dr. Peter M. Graham #Saint Joseph’s University
  • 09 Nov 22: Double Group Transfer Reactions of an Unsaturated Tantalum Methylidene Complex with Pyridine N-Oxides #CHM 2511 (Inorganic Chemistry) #Dr. Peter M. Graham #Saint Joseph’s University
  • 09 Nov 21: Conservation of Angular Momentum #Dr. Paul J. Angiolillo #PHY 1032 (General Physics Lab I) #Saint Joseph’s University
archive

More from…
CHM 1112 (General Chemistry Lab I) (Class) / Dr. Joseph N. Bartlett (Teacher) / Saint Joseph’s University (School) / schoolwork (Post Type)

⇠ Previous
Next schoolwork ⇢
  • Home
  • About
  • Archive
  • Mail
  • Random
  • Dingus
  • Reading
  • Code

ADAM CAP is an elastic waistband enthusiast, hammock admirer, and rare dingus collector hailing from Berwyn, Pennsylvania.

My main interests at this time include reading, walking, and learning how to do everything faster.

Psst: If you find my website helpful or enjoyable, please join my newsletter and/or send me an email—I want to hear from you!

Disclosure: As an Amazon Associate I earn from qualifying purchases.

© 2009–2023 Adam Cap(riola) top ⇡