Adam Cap

  • About
  • Mail
  • Archive/Search

The Reactivity of Magnesium Metal with Hydrochloric Acid

↘︎ Feb 7, 2007 … 3′ … download⇠ | skip ⇢

Introduction

The ideal gas law is used to define how gasses typically act. It is not precise, as gasses do not usually act ideally, but it works for most laboratory conditions. The ideal gas law is defined by PV = nRT (pressure in atm * volume in L = moles * constant * temperature in K). There is also a rule that states the total pressure of a system is equal to the sum of its partial pressures. Using this information, a small piece of metal magnesium is reacted with hydrochloric acid. The reaction is represented by the equation Mg (s) + 2HCl (aq) –> MgCl2 (aq) + H2 (g). Using the sum of partial pressures rule and the ideal gas law to find moles, the molar mass of Mg (s) can be calculated only knowing the pressure of H2 (g).

Experimental

First, a strip of magnesium metal was obtained and weighed on an analytical balance. This weight was recorded to three significant figures. Next, the magnesium strip was wrapped around the tip of a copper wire, and was then encaged by the same copper wire by wrapping the wire around the magnesium. Following this, the tip of a buret was calibrated and this volume was recorded. Next, about 3 mL of concentrated HCl was put in the empty buret with the stopcock closed, and distilled water was then added until the buret was almost full. The copper wire with the magnesium was then lowered into the buret and held in place with a one-holed rubber stopper to make sure the wire would stay in place and would not fall to the bottom. Distilled water was squirted into the one-holed rubber stopped to make sure the buret was completely filled. The buret was then quickly inverted and clamped into a 600 mL beaker half filled with tap water. The water level on the buret was recorded after production of gas ceased. Finally, the distance between the height of water in the beaker and water in the buret was also recorded. The process was repeated for one more trial.

Results

Data Trial 1 Trial 2
Mass of Mg sample, g 0.0406 0.0384
Volume of uncalibrated portion of buret, mL 1.20 1.20
Final buret reading, mL 9.40 11.52
Volume of hydrogen, mL 41.80 39.68
Temperature of hydrogen, ºC 23 22
Barometric pressure, mm Hg 762.76 762.76
Differences in water levels between buret and beaker, mm H2O 135 144.5
Pressure difference of water levels, mm Hg 10.0 10.7
Aqueous vapor pressure at temperature of hydrogen, mm Hg 21.2 19.8
Pressure of hydrogen after correction for difference in water levels and vapor pressure, mm Hg 731.6 732.3
Pressure converted to atm, atm 0.9626 0.9636
Absolute temperature, K 296 295
Volume of hydrogen, L 0.04180 0.03968
Moles of hydrogen gas produced, moles 0.001656 0.001579
Calculated molar mass of Mg, g/mole 24.52 24.32
Actual molar mass of Mg, g/mole 24.31 24.31
Percent error 0.8638 0.04113

Average percent error: 0.4525

Calculations

In order to find the volume of hydrogen, I took the total volume of the buret (50 mL plus the calibrated part) and subtracted my final reading. Using the results from my first trial, 50.0 mL + 1.20 mL – 9.40 mL = 41.80 mL. To find the pressure difference of water levels, I took the distance in difference of water levels, multiplied by the density of water, and divided by the density of Hg. From the first trial, 135 mm (1.0 g/mL) / 13.5 g/mL = 10.0 mm. The aqueous vapor pressure was found using a chart. At 23 ºC, the aqueous vapor pressure is 21.2 torr (or 21.1 mm Hg). Using the equation Patm = PH2O (l) + PH20 (g) + PH2 (g), I could solve for the pressure of H2 (g). Subbing in the numbers from the first trial, 762.76 torr = 21.2 torr + 10.0 torr + PH2 (g). PH2 (g) = 731.6 torr. To find atmospheres, I multiplied by 1 atm/760 torr. 731.6 torr (1 atm/760 torr) = 0.9626 atm. I then rearranged the ideal gas law to find moles of hydrogen produced. n = PV/RT, n = 0.9626 atm * 0.04180 L / (0.0821 L atm mole-1 K-1 * 296 K), n = 0.001656 moles. In the equation for the reaction, there are an equal number of moles of hydrogen and magnesium used. To find the molar mass of magnesium, I took the mass of the magnesium used divided by the number of moles used. From trial 1, 0.0406 g / 0.001656 moles = 24.52 g/mol. To find percent error, I took the absolute value of the true value minus my calculated value divided by the true value and multiplied by 100%. Using trial 1, ( | 24.31 – 24.52 | ) / 24.31 * 100% = 0.8638%. Finally, to find the average percent error, I added the two percents and divided by two: (0.8638% + 0.04113%) / 2 = 0.4525%.

Discussion/Conclusions

My results are very good. An average percent error of 0.4525% is extremely small, so I feel that I performed the experiment well and had some good luck. I felt that when performing the experiment, I could have gotten some error from my temperature readings. The temperature seemed to fluctuate a couple degrees during the experiment and I thought that would negatively affect my final results. I also thought I could have gotten error from my difference in water levels measurement because it was hard to hold the ruler steady and read the ruler at the same time. Lastly, since the ideal gas law is not precise, error could have come from that. Other than those questionable factors, the experiment went smoothly.

Me

circa 2008 (20 y/o)

about adam

Recently…

  • 10 May 25: An Art Critique on “Tennis Court” by Ellsworth Kelly (1949) #ART 1021 (Introduction to Art History & Appreciation II) #Dr. Emily Hage #Saint Joseph’s University
  • 10 Apr 22: Oxygenation and Hydrochlorination of Vaska’s Complex Ir(Cl)[P(C6H5)3]2(CO) #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Apr 21: Refraction Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Apr 20: The Mental, Physical, and Social Implications of Self Enhancement #Dr. Judith J. Chapman #PSY 2341 (Psychology of the Self) #Saint Joseph’s University
  • 10 Apr 18: Law of Reflection Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Apr 16: Synthesis, Determination, and Catalytic Measurement of Ruthenium Indenylidene Complexes used in Olefin Metathesis #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Apr 12: Current Balance Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Apr 10: The Perfect Paper #Mr. Robert Fleeger #PHL 2011 (Knowledge and Existence) #Saint Joseph’s University
  • 10 Mar 29: Magnetic Fields Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Mar 22: Series and Parallel Circuits Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Mar 17: Synthesis and Determination of [1,3,5-C6H3(CH3)3]Mo(CO)3 #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Mar 4: Synthesis and Determination of Polypyrazolylborates #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Mar 2: Electrical Resistance and Ohm’s Law #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Feb 22: Hooke’s Law and Simple Harmonic Motion #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Feb 11: Tinkering with Tin #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Jan 21: Psychology of the Self Notes #Dr. Judith J. Chapman #PSY 2341 (Psychology of the Self) #Saint Joseph’s University
  • 09 Dec 7: The Biochemistry of Anthrax #CHM 2611 (Biochemistry) #Dr. Mark F. Reynolds #Saint Joseph’s University
  • 09 Dec 5: Ring-Opening Metathesis PowerPoint Presentation #CHM 2511 (Inorganic Chemistry) #Dr. Peter M. Graham #Saint Joseph’s University
  • 09 Nov 22: Double Group Transfer Reactions of an Unsaturated Tantalum Methylidene Complex with Pyridine N-Oxides #CHM 2511 (Inorganic Chemistry) #Dr. Peter M. Graham #Saint Joseph’s University
  • 09 Nov 21: Conservation of Angular Momentum #Dr. Paul J. Angiolillo #PHY 1032 (General Physics Lab I) #Saint Joseph’s University
archive

More from…
CHM 1122 (General Chemistry Lab II) (Class) / Mr. John Longo (Teacher) / Saint Joseph’s University (School) / schoolwork (Post Type)

⇠ Previous
Next schoolwork ⇢
  • Home
  • About
  • Archive
  • Mail
  • Random
  • Dingus
  • Reading
  • Code

ADAM CAP is an elastic waistband enthusiast, hammock admirer, and rare dingus collector hailing from Berwyn, Pennsylvania.

My main interests at this time include reading, walking, and learning how to do everything faster.

Psst: If you find my website helpful or enjoyable, please join my newsletter and/or send me an email—I want to hear from you!

Disclosure: As an Amazon Associate I earn from qualifying purchases.

© 2009–2023 Adam Cap(riola) top ⇡