Adam Cap

  • About
  • Mail
  • Archive/Search

Determining the Rate Law for the Crystal Violet-Hydroxide Ion Reaction

↘︎ Feb 14, 2007 … 1′ … download⇠ | skip ⇢

Introduction

The kinetics of a chemical equation is determined by its rate. The rate is the speed at which the reactants form into products. The rate is dependent on the concentrations and the orders of the reactants. One way to find the order is by first measuring the concentration of the products as time passes. A spectrophotometer is one tool that can measure relative concentration if the reactants change color as the form products. Graphing absorbance versus time, ln(absorbance) versus time, and 1/absorbance versus time will determine the order depending on which graph produces a straight line. In this experiment, crystal violet and NaOH form a complex that changes from transparent blue to colorless over time. The absorbance is measured using a spectrophotometer, and the rate law is then determined using this information.

Experimental

First, a spectrophotometer was turned on and set at a wavelength of 595 nm. Next, a cuvet was obtained, rinsed, and filled with deionized water. The outside of the cuvet was cleaned Kimwipe to get rid of smudges. The cuvet was then inserted into the spectrophotometer and the spectrophotometer was zeroed. Next, 10.0 mL of 0.010 M NaOH solution was dispensed into one clean 25 mL graduated cylinder and 10.0 mL of 1.50 x 10-5 M crystal violet solution was dispensed into another clean 25 mL graduated cylinder. The solutions were then simultaneously poured into a clean 50 mL beaker. This mixture was mixed with a glass stirring rod for a few moments to ensure consistency. The cuvet was then rinsed with the mixture two or three times and was then filled with the mixture. The cuvet again cleaned with a Kimwipe and was inserted into the spectrophotometer. The absorbance reading was measured every minute for twenty minutes, starting when the cuvet was first put in. This process was then repeated, replacing the 0.010 M NaOH solution with 0.020 M NaOH solution.

Results

0.010 M NaOH Solution:

Time Absorbance lnA 1/A
0 0.743 -0.297 1.35
1 0.728 -0.317 1.37
2 0.713 -0.338 1.40
3 0.703 -0.352 1.42
4 0.691 -0.370 1.45
5 0.680 -0.386 1.47
6 0.673 -0.396 1.49
7 0.664 -0.409 1.51
8 0.654 -0.425 1.53
9 0.644 -0.440 1.55
10 0.636 -0.453 1.57
11 0.624 -0.472 1.60
12 0.610 -0.494 1.64
13 0.603 -0.506 1.66
14 0.593 -0.523 1.69
15 0.580 -0.544 1.72
16 0.571 -0.560 1.75
17 0.560 -0.580 1.79
18 0.548 -0.601 1.82
19 0.539 -0.618 1.86
20 0.530 -0.635 1.89

0.020 M NaOH Solution:

Time Absorbance lnA 1/A
0 0.697 -0.361 1.43
1 0.650 -0.431 1.54
2 0.606 -0.501 1.65
3 0.569 -0.564 1.76
4 0.530 -0.635 1.89
5 0.492 -0.709 2.03
6 0.459 -0.779 2.18
7 0.428 -0.849 2.34
8 0.399 -0.919 2.51
9 0.373 -0.986 2.68
10 0.351 -1.047 2.85
11 0.328 -1.115 3.05
12 0.308 -1.178 3.25
13 0.288 -1.245 3.47
14 0.269 -1.313 3.72
15 0.254 -1.370 3.94
16 0.236 -1.444 4.24
17 0.221 -1.510 4.52
18 0.206 -1.580 4.85
19 0.192 -1.650 5.21
20 0.179 -1.720 5.59

Discussion/Conclusions

For the graphs using 0.010 M NaOH, the plot of Absorbance vs. Time had the straightest line (R2 = 0.9985), but the plot of lnA vs. Time also had a very straight line (R2 = 0.9971). The plot of 1/A had the least straight line with R2 equaling 0.9906. For the graphs using 0.020 M NaOH, lnA vs. Time had the straightest line (R2 = 0.9998). Absorbance vs. Time and 1/A vs. Time were not nearly as straight, with their R2 equaling 0.9646 and 0.9695, respectively. I think it is fairly safe to say that the rate equation is first order because lnA vs. Time overall yielded the straightest line in the two runs. The rate equation is rate = k [NaOH].

Me

circa 2008 (20 y/o)

about adam

Recently…

  • 10 May 25: An Art Critique on “Tennis Court” by Ellsworth Kelly (1949) #ART 1021 (Introduction to Art History & Appreciation II) #Dr. Emily Hage #Saint Joseph’s University
  • 10 Apr 22: Oxygenation and Hydrochlorination of Vaska’s Complex Ir(Cl)[P(C6H5)3]2(CO) #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Apr 21: Refraction Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Apr 20: The Mental, Physical, and Social Implications of Self Enhancement #Dr. Judith J. Chapman #PSY 2341 (Psychology of the Self) #Saint Joseph’s University
  • 10 Apr 18: Law of Reflection Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Apr 16: Synthesis, Determination, and Catalytic Measurement of Ruthenium Indenylidene Complexes used in Olefin Metathesis #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Apr 12: Current Balance Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Apr 10: The Perfect Paper #Mr. Robert Fleeger #PHL 2011 (Knowledge and Existence) #Saint Joseph’s University
  • 10 Mar 29: Magnetic Fields Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Mar 22: Series and Parallel Circuits Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Mar 17: Synthesis and Determination of [1,3,5-C6H3(CH3)3]Mo(CO)3 #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Mar 4: Synthesis and Determination of Polypyrazolylborates #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Mar 2: Electrical Resistance and Ohm’s Law #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Feb 22: Hooke’s Law and Simple Harmonic Motion #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 10 Feb 11: Tinkering with Tin #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 10 Jan 21: Psychology of the Self Notes #Dr. Judith J. Chapman #PSY 2341 (Psychology of the Self) #Saint Joseph’s University
  • 09 Dec 7: The Biochemistry of Anthrax #CHM 2611 (Biochemistry) #Dr. Mark F. Reynolds #Saint Joseph’s University
  • 09 Dec 5: Ring-Opening Metathesis PowerPoint Presentation #CHM 2511 (Inorganic Chemistry) #Dr. Peter M. Graham #Saint Joseph’s University
  • 09 Nov 22: Double Group Transfer Reactions of an Unsaturated Tantalum Methylidene Complex with Pyridine N-Oxides #CHM 2511 (Inorganic Chemistry) #Dr. Peter M. Graham #Saint Joseph’s University
  • 09 Nov 21: Conservation of Angular Momentum #Dr. Paul J. Angiolillo #PHY 1032 (General Physics Lab I) #Saint Joseph’s University
archive

More from…
CHM 1122 (General Chemistry Lab II) (Class) / Mr. John Longo (Teacher) / Saint Joseph’s University (School) / schoolwork (Post Type)

⇠ Previous
Next schoolwork ⇢
  • Home
  • About
  • Archive
  • Mail
  • Random
  • Dingus
  • Reading
  • Code

ADAM CAP is an elastic waistband enthusiast, hammock admirer, and rare dingus collector hailing from Berwyn, Pennsylvania.

My main interests at this time include reading, walking, and learning how to do everything faster.

Psst: If you find my website helpful or enjoyable, please join my newsletter and/or send me an email—I want to hear from you!

Disclosure: As an Amazon Associate I earn from qualifying purchases.

© 2009–2023 Adam Cap(riola) top ⇡