Adam Cap

  • About
  • Mail
  • Archive/Search

CHM 2511 (Inorganic Chemistry)

schoolwork | Class … see also: 12th Grade – English / 4th Grade / CHM 1112 (General Chemistry Lab I) / 11th Grade – English – American Literature / PHY 1042 (General Physics Lab II) / POL 1031 (Introduction to Comparative Politics)

Ring-Opening Metathesis PowerPoint Presentation

↘︎ Dec 5, 2009 … 1′ … download⇠ | skip ⇢

Otherwise known as: “A Reusable Polymeric Asymmetric Hydrogenation Catalyst Made by Ring-Opening Olfein Metathesis Polymerization”

This was a PowerPoint presentation I did for class.

Me

circa 2009 (21 y/o)

about adam

Jump…

  • 09 Dec 5: Ring-Opening Metathesis PowerPoint Presentation #CHM 2511 (Inorganic Chemistry) #Dr. Peter M. Graham #Saint Joseph's University
  • 09 Nov 22: Double Group Transfer Reactions of an Unsaturated Tantalum Methylidene Complex with Pyridine N-Oxides #CHM 2511 (Inorganic Chemistry) #Dr. Peter M. Graham #Saint Joseph's University
  • 09 Oct 22: A Stable Neutral Diborene Containing a B=B Double Bond #CHM 2511 (Inorganic Chemistry) #Dr. Peter M. Graham #Saint Joseph's University

More from…
Dr. Peter M. Graham (Teacher) / Saint Joseph’s University (School) / schoolwork (Post Type)

Double Group Transfer Reactions of an Unsaturated Tantalum Methylidene Complex with Pyridine N-Oxides

↘︎ Nov 22, 2009 … 2′ … download⇠ | skip ⇢

It is widely known among inorganic chemists that multiply bonded metal-ligand species take part in a diverse set of atom and group transfer reactions. It is common to witness CR2 groups transferred to unsaturated organic substrates, but viewing the insertion of CH2 into C-H bonds to yield saturated product is quite unusual. In the case of [TolC(NSiMe3)2]2Ta(CH2)CH3, its electrophilic nature allows for an improbable double group transfer to occur when exposed to pyridine N-oxides. This reactions yields [TolC(NSiMe3)2]2Ta(O)CH3 due to simultaneous deoxygenation and regioselective methylation of the pyridine N-oxide.

The benzamidinate tantalum ethylidene complex is also able to react with nitrones, which are similar in structure for pyridine N-oxides. It is not however able to react with weak oxidants such as styrene oxide and triphenylphosphine oxide. Only one equivalent of the pyridine N-oxide was needed for the aforementioned reaction to take place. 2-Methylpryidine is produced as well, as confirmed by comparison using NMR integration versus a trimethoxybeneze internal standard. The trimethoxybenze reacts further with 2-methylpyridin N-oxide to ultimately yield 2,6-dimethylpyridine and oxo complex.

It should be noted that methylation occurs regioselectively at the unsubstituted ortho position in each pyridine N-oxide. Also, the substituted pyridine N-oxide species react much slower than the unsubstituted variant, comparatively in minutes versus microseconds.

Proton and carbon 13 NMR, IR spectroscopy, and X-ray crystallography were all used to verify the tantalum oxo complex product. The IR spectrum shows a strong stretch at 922 cm-1, which is a feasible number to indicative of terminal Ta-O multiple bonds (typically 850-1000 cm-1). X-ray crystallography reveals a distorted-octahedral coordination geometry surrounding the tantalum and thus confirmed the presence of a terminal oxo character. The measured bond length of the tantalum atom to oxygen bond is reported to be 1.76 Å, which is in line with previously reported figures for Ta-O multiple bonds. Thus, all the statistics seem to confirm that a double group transfer does indeed take place.

The mechanism of this reaction is thought to take place via two possible schemes involving a total of three mechanisms, but it is not known which scheme or mechanism is correct. There is an absence of intermediates in the reaction as evidenced by UV, IR, and 1H NMR spectroscopy, so deuterium labeling is used to distinguish these potential routes of formation. GC-MS shows parent ion at m/z 95 and 111 corresponding to the methyl and dimethylpyridine products, respectively. At 2.40 ppm there is a 1:1:1 triplet indicative of the CH2D group. This group also appears in both the proton and carbon 13 NMR spectras, which in all suggests that the mechanism of reaction takes place via scheme one and a mechanism label B.

Finally, nitrones which is similar in structure to pyridine N-oxides are also reacted with the benzamidinate tantalum ethylidene complex to see if they have a comparable interaction. Only after heating the complex with N-tert-butyl-α-phenylnitrone at 45 °C for 40 hours did styrene and another new organometallic product come to fruition. The new product is suspected to be [TolC(NSiMe3)2]­2TA(O)(NtBuMe) through 1H, 13C{1H} NMR, IR, and mass spectroscopic techniques.

In conclusion, it is the enhanced electrophilicity of the benzamidinate tantalum ethylidene which allows for the reaction pathway to occur. The atom transfer reactions allow for Ta-O double bonds and organic product with new C-C bonds to be formed. Further investigation into these matters is ongoing. I believe that following steps that could be taken would to delve into other metals complexes that could allow for double group transfers. Logically, I would think that the next metals to investigate would be other group 5 metals, possibly replacing Ta with Nb or Db. These metals should have the most similar properties in relationship to Ta. Reactants other than N-oxides and nitrones could also be analyzed to see if it is possible to replicate the double group transfer.

In a related study performed by ….

Me

circa 1996 (9 y/o)

Popularly…

  • 04 Mar 25: Creon as a Tragic Character in “Antigone” #10th Grade – English – Forms of Fiction #Great Valley High School #Mr. Thomas Esterly
  • 06 Sep 25: Determining the Density of an Unknown Substance (Lab Report) #CHM 1112 (General Chemistry Lab I) #Dr. Joseph N. Bartlett #Saint Joseph’s University
  • 07 Sep 26: Recrystallization and Melting Point Determination Lab #CHM 2312 (Organic Chemistry Lab I) #Dr. Roger K. Murray #Saint Joseph’s University
  • 07 Oct 17: Acid/Base Extraction of a Benzoic Acid, 4-Nitroaniline, and Naphthalene Mixture #CHM 2312 (Organic Chemistry Lab I) #Dr. Roger K. Murray #Saint Joseph’s University
  • 09 Oct 2: Verifying Newton’s Second Law #Dr. Paul J. Angiolillo #PHY 1032 (General Physics Lab I) #Saint Joseph’s University
  • 05 Mar 28: The American Dream Essay #11th Grade – English – American Literature #Great Valley High School #Mrs. Michelle Leininger
  • 04 Nov 27: The Crucible Essay on the Theme of Having a Good Name #11th Grade – English – American Literature #Great Valley High School #Mrs. Michelle Leininger
  • 10 Mar 2: Electrical Resistance and Ohm’s Law #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 08 Apr 6: The Portrayal of Obsessive-Compulsive Disorder in “As Good as It Gets” #PSY 1151 (Psychology of Abnormal Behavior) #Saint Joseph’s University
  • 07 Nov 7: Liquids #CHM 2312 (Organic Chemistry Lab I) #Dr. Roger K. Murray #Saint Joseph’s University
  • 06 Oct 2: Yeast Lab #BIO 1011 (Biology I: Cells) #Dr. Denise Marie Ratterman #Saint Joseph’s University
  • 07 Nov 14: Thin-Layer Chromatography #CHM 2312 (Organic Chemistry Lab I) #Dr. Roger K. Murray #Saint Joseph’s University
  • 07 Feb 21: Determining an Equilibrium Constant Using Spectrophotometry #CHM 1122 (General Chemistry Lab II) #Mr. John Longo #Saint Joseph’s University
  • 06 Nov 20: The Effect Light Intensity Has on the Photosynthesis of Spinach Chloroplasts #BIO 1011 (Biology I: Cells) #Dr. Denise Marie Ratterman #Saint Joseph’s University
  • 04 Oct 3: Catcher in the Rye Essay on the Immaturity of Holden Caufield #11th Grade – English – American Literature #Great Valley High School #Mrs. Michelle Leininger
  • 06 Nov 14: Enthalpy of Hydration Between MgSO4 and MgSO4 ∙ 7 H2O #CHM 1112 (General Chemistry Lab I) #Dr. Joseph N. Bartlett #Saint Joseph’s University
  • 10 Mar 22: Series and Parallel Circuits Lab #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 07 Feb 14: Determining the Rate Law for the Crystal Violet-Hydroxide Ion Reaction #CHM 1122 (General Chemistry Lab II) #Mr. John Longo #Saint Joseph’s University
  • 10 Feb 22: Hooke’s Law and Simple Harmonic Motion #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 07 Feb 7: The Reactivity of Magnesium Metal with Hydrochloric Acid #CHM 1122 (General Chemistry Lab II) #Mr. John Longo #Saint Joseph’s University

More from…
Dr. Peter M. Graham (Teacher) / Saint Joseph’s University (School) / schoolwork (Post Type)

A Stable Neutral Diborene Containing a B=B Double Bond

↘︎ Oct 22, 2009 … 2′ … download⇠ | skip ⇢

Unlike the well know and oft studied chemistry of double bonds between carbons, the chemistry of boron-boron double bonds is for the most part unexplored. It is believed that boron should behave similarly to carbon due to its relativity to the element on the periodic table. Anions containing boron double bonds, specifically [R2BBR­­2]2-, have in the past been predicted to be possible structures of interest to synthesize in the laboratory, however such efforts have failed for the most part.

It was then proposed to explore neutral diborenes, even though they in theory should be highly reactive compounds due to their triplet ground states and two one-electron π-bonds according to molecular orbital theory. The electron deficiency in this structure could however be stabilized by the addition of Lewis base ligands. The stabilizing ability of different ligand groups were assessed, including CO and NHC, which were chosen based on their strong electron donating capabilities. The ligand group that ultimately experimentally produced an actual neutral diborene was :C{N(2,6-PRi2C6H3)CH}2. Previous work from using this ligand group for stabilizing carbenes suggested that this would be a potential stabilizing ligand for a diborene.

This compound, R(H)B=B(H)R, where R is the aforementioned ligand group, was synthesized beginning with RBBr3 and KC8 in diethyl ether. Two products were isolated from this reaction, including the desired diborene R(H)B=B(H)R. It was shown that a ratio of 1:5.4 of RBBr3 to KC8 yielded the highest percentage of R(H)B=B(H)R (12%). Any excess amount of RBBr3 over this ratio resulted in a decrease of R(H)B=B(H)R and thus in increase of the other product, R(H)2B-B(H)2R.

A few methods were utilized in order to determine the chemical makeup of these products. NMR resonances of RBH3, R(H)2B-B(H)2R, and R(H)B=B(H)R were respectively reported to be -35.38, -31.62, and +25.30 ppm. The 11B signal of R(H)B=B(H)R produced a quartet, while the other two compounds elicited singlets. This alone could suggest double bond character between borons.

X-ray structural analysis shows a bond distance of 1.828 Å for R(H)2B-B(H)2R. This number seems to be on point with calculated B-B bond lengths for similar structures such as the CO-ligated analogue (1.819 Å) and an activated m-terphenyl based diborate (1.83 Å). Crystallization of R(H)B=B(H)R reveals B-C bond distances of 1.547 Å, which is marginally shorter than that of the other molecules. In addition to this, it is calculated that the angles between the C3N2 carbene rings and the core are strikingly different than that of the other compounds used and produced. Finally, the B=B bond distance in R(H)B=B(H)R was measured to be much shorter than the B-B distance reported in R(H)2B-B(H)2R, again implying a double bond.

DFT computations were also used to support the nature of R(H)B=B(H)R. The analysis was performed on the simplified model, where R=:C(NHCH)2­. The experimental bond lengths for the non-simplified model seem to be in concordance with the computed B-B and B-C bond lengths, and well as the B-B-C bond angle calculated from the simplified model analyzed using DFT. The bond character of these bonds was also delved into via HOMO representations of the compounds among other computational techniques.

In conclusion, the authors of the paper were able to successfully prove that they had synthesized and characterized the first neutral diborene compound. They also ventured into the nature of the elusive boron-boron double bond. Though it was not necessarily expected that this phenomenon could feasibly be synthesized due to the expected reactivity of the boron-boron double bond, these chemists found a way to isolate the compound. In context to the larger field of chemistry, I suppose that the authors could determine other possible ligand groups that would produce a stable neutral diborene. They could also venture into increasing the percent yield, as 12% is on the low side. Finally, they could explore other group 13 elements, such as Al and Ga to see if they can replicate similar double bond properties.

Me

circa 2017 (29 y/o)

Randomly…

  • 10 Apr 22: Oxygenation and Hydrochlorination of Vaska’s Complex Ir(Cl)[P(C6H5)3]2(CO) #CHM 2521 (Inorganic Chemistry Lab) #Dr. Peter M. Graham #Saint Joseph’s University
  • 07 Apr 18: Is it Logical to Believe in God? #Mr. Robert Fleeger #PHL 1011 (The Human Person) #Saint Joseph’s University
  • 05 Aug 29: My Math Autobiography #12th Grade – AP Computer Science #Dr. Paul Burgmayer #Great Valley High School
  • 08 Nov 19: The Differences Between British and Japanese Prime Ministers #Dr. Kazuya Fukuoka #POL 1031 (Introduction to Comparative Politics) #Saint Joseph’s University
  • 02 Feb 27: Margarine is to Butter as Adam is to Jem #8th Grade – English #Great Valley Middle School #Mrs. Heidi Capetola
  • 09 Nov 21: Conservation of Angular Momentum #Dr. Paul J. Angiolillo #PHY 1032 (General Physics Lab I) #Saint Joseph’s University
  • 09 Nov 8: The Ballistic Pendulum, Projectile Motion, and Conservation of Momentum #Dr. Paul J. Angiolillo #PHY 1032 (General Physics Lab I) #Saint Joseph’s University
  • 10 Mar 2: Electrical Resistance and Ohm’s Law #Dr. Paul J. Angiolillo #PHY 1042 (General Physics Lab II) #Saint Joseph’s University
  • 06 Oct 24: Synthesis of Strontium Iodate Monohydrate #CHM 1112 (General Chemistry Lab I) #Dr. Joseph N. Bartlett #Saint Joseph’s University
  • 05 Nov 8: Me Speaking French #1 #12th Grade – AP French #Great Valley High School #Mrs. Patricia Carlini
  • 07 Feb 18: A Study in the Mendelian Inheritance Ratio of Corn and Sorghum #BIO 1021 (Biology II: Genetic and Evolutionary Biology) #Dr. Julia Lee #Saint Joseph’s University
  • 09 Nov 22: Double Group Transfer Reactions of an Unsaturated Tantalum Methylidene Complex with Pyridine N-Oxides #CHM 2511 (Inorganic Chemistry) #Dr. Peter M. Graham #Saint Joseph’s University
  • 07 Apr 4: Relating to Jimmy’s Destructive Tendencies in “The Dubliners” #ENG 1021 (Texts and Contexts) #Mrs. Marie H. Flocco #Saint Joseph’s University
  • 09 Jan 30: Autobiography for Philosophy of Death #Fr. Albert Jenemann #PHL 2321 (Philosophy of Death) #Saint Joseph’s University
  • 05 Oct 16: Villanova #Great Valley High School
  • 07 Sep 11: Left Brain Right Brain Test #PSY 1001 (Introductory Psychology) #Saint Joseph’s University
  • 09 Mar 29: WHY SJU IS DA BOMB #Saint Joseph’s University
  • 04 Oct 3: Catcher in the Rye Essay on the Immaturity of Holden Caufield #11th Grade – English – American Literature #Great Valley High School #Mrs. Michelle Leininger
  • 09 Dec 7: The Biochemistry of Anthrax #CHM 2611 (Biochemistry) #Dr. Mark F. Reynolds #Saint Joseph’s University
  • 01 Jun 1: A Picture is Worth a Thousand Words #7th Grade – English #Great Valley Middle School #Mrs. Joann Bedell

More from…
Dr. Peter M. Graham (Teacher) / Saint Joseph’s University (School) / schoolwork (Post Type)

  • Home
  • About
  • Archive
  • Mail
  • Random
  • Dingus
  • Reading
  • Code

ADAM CAP is an elastic waistband enthusiast, hammock admirer, and rare dingus collector hailing from Berwyn, Pennsylvania.

My main interests at this time include reading, walking, and learning how to do everything faster.

Psst: If you find my website helpful or enjoyable, please join my newsletter and/or send me an email—I want to hear from you!

Disclosure: As an Amazon Associate I earn from qualifying purchases.

© 2009–2023 Adam Cap(riola) top ⇡